Skip to main content
  • Original article
  • Open access
  • Published:

Foot neuropathy in rheumatoid arthritis patients: clinical, electrophysiological, and ultrasound studies

Abstract

Aim

This study aimed to evaluate neuropathic foot pain in patients with rheumatoid arthritis (RA) using electrophysiological studies and musculoskeletal ultrasound (MSUS) to address the association between these findings and disease activity. Evaluation of the usefulness of this combination was undertaken.

Design

The present study was designed as a cross-sectional study.

Patients and methods

A total of 50 RA patients underwent a complete history-taking and rheumatologic examination. According to the cut-off point of Disease Activity Score in 28 joints, patients were divided into two equal groups (25 patients each): active and inactive. In total, 25 healthy individuals were included as controls. Routine tibial and peroneal nerve conduction studies, as well as electromyography of tibialis anterior and abductor hallucis muscles, were carried out. MSUS assessment of the ankle joint and extra-articular portion of the foot complex was also performed.

Results

Electrophysiological findings of foot neuropathy were observed in 78% of the patients, irrespective of the disease activity level. In total, 48% of the patients had mononeuropathies of a demyelinating pattern (entrapment neuropathies), whereas the other 30% had symmetrical polyneuropathy with axonal degeneration. Combined distal tibial and peroneal nerve entrapments were reported in 16% of the patients. A positive power Doppler signal and joint erosions showed a highly statistical significant prevalence among the active group in comparison with patients in remission (P ≤ 0.001).

Conclusion

Peripheral nerve affection is common in the rheumatoid foot, irrespective of the disease activity status. The most common neuropathies were posterior tarsal tunnel syndrome, peroneal nerve entrapment at the fibular neck, and pure sensory axonal neuropathy. A positive power Doppler signal and bone erosions of the ankle joint, detected by MSUS, were associated with RA disease activity. Electrophysiology was superior to MSUS for the diagnosis of posterior tarsal tunnel syndrome.

References

  1. Loveday DT, Jackson GE, Geary NP. The rheumatoid foot and ankle: current evidence. Foot Ankle Surg 2012; 18:94–102.

    Article  PubMed  Google Scholar 

  2. Ibrahim I, Medani S, El-Hameed M, Imam M, Shaaban M. Tarsal tunnel syndrome in patients with rheumatoid arthritis, electrophysiological and ultrasound study. Alexandria J Med 2013; 49:95–104.

    Article  Google Scholar 

  3. Agarwal V, Singh R, Wiclaf, Chauhan S, Tahlan A, Ahuja C, et al. A clinical, electrophysiological, and pathological study of neuropathy in rheumatoid arthritis. Clin Rheumatol 2007; 27:841–844.

    Article  PubMed  Google Scholar 

  4. Biswas M, Ghosh S, Ghosh K, Chatterjee A, Dasgupta S, Ganguly P. Prevalence, types, clinical associations, and determinants of peripheral neuropathy in rheumatoid patients. Ann Indian Acad Neurol 2011; 14: 194–197.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kerry R, Holt G, Stockley I. The foot in chronic rheumatoid arthritis: a continuing problem. Foot 1994; 4:201–203.

    Article  Google Scholar 

  6. Borman P. Foot problems in a group of patients with rheumatoid arthritis: an unmet need for foot care. Open Rheumatol J 2012; 6:290–295.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wakefield R, Gibbon W, Conaghan P, O’Connor P, McGonagle D, Pease C, et al. The value of sonography in the detection of bone erosions in patients with rheumatoid arthritis: a comparison with conventional radiography. Arthritis Rheum 2000; 43:2762–2770.

    Article  CAS  PubMed  Google Scholar 

  8. Aletaha D, Neogi T, Silman A, Funovits J, Felson D, Bingham, C, et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010; 62:2569–2581.

    Article  PubMed  Google Scholar 

  9. Berker E, Dinçer N. Chronic pain and rehabilitation. Agri 2005; 17:10–16.

    PubMed  Google Scholar 

  10. Fransen J, Creemers MCW, Van Riel PLCM. Remission in rheumatoid arthritis: agreement of the disease activity score (DAS28) with the ARA preliminary remission criteria. Rheumatol J 2004; 43:1252–1255

    Article  CAS  Google Scholar 

  11. Waller R, Manuel P, Williamson L. The Swindon foot and ankle questionnaire: is a picture worth a thousand words?. ISRN Rheumatol 2012; 2012:1–8.

    Article  Google Scholar 

  12. Stanford Patient Education Research Center. Stanford HAQ 8-Item Disability Scale; 2015. Available at: http://patienteducation.stanford.edu/research/haq8.html. [Last accessed on 2015 Sep 20].

  13. Barohn RJ. Muscle diseases. In: Wyngaarden JB, Smith LH, editors. Cecil text of medicine. Philadelphia: Saunders; 1982. P2013–P2043.

    Google Scholar 

  14. Rocha OMD, Batista ADAP, Maestá N, Burini RC, Laurindo IMM. Sarcopenia in rheumatoid cachexia: definition, mechanisms, clinical consequences and potential therapies. Rev Bras Reumatol 2009; 49: 288–301.

    Article  Google Scholar 

  15. Montagna P, Liguori R. The motor Tinel sign: a useful sign in entrapment neuropathy?.. Muscle Nerve 2000; 23:976–978.

    Article  CAS  PubMed  Google Scholar 

  16. Chung T, Yen J, Ou T, Liu H, Tsai W. Prevalence of neuropathic pain in patients with rheumatoid arthritis. Formosan J Rheumatol 2009; 23:19–24.

    Google Scholar 

  17. Kim W, Kim H, Bluementhal F, Joynt R. Antidromic sensory nerve conduction studies of medial and lateral plantar nerves in normals. Electromyogr Clin Neurophysiol 1993; 33:289–294.

    CAS  PubMed  Google Scholar 

  18. Buschbacher R, Prahlow N Manual of nerve conduction studies. New York, NY: Demos; 2006.

    Google Scholar 

  19. Preston D, Shapiro B. Artefacts and technical factors. In: Preston D, Shapiro B, editors. Electromyography and neuromuscular disorders. 3rd ed. Philadelphia: Elsevier; 2013.71–89.

    Chapter  Google Scholar 

  20. Preston D, Shapiro B. Basic nerve conduction studies. In: Preston D, Shapiro B, editors. Electromyography and neuromuscular disorders. 3rd ed. Philadelphia: Elsevier; 2013.19–35.

    Chapter  Google Scholar 

  21. Preston D, Shapiro B. Routine lower extremity nerve conduction. In: Preston D, Shapiro B, editors. Electromyography and neuromuscular disorders. 3rd ed. Philadelphia: Elsevier; 2013. 115–124.

    Chapter  Google Scholar 

  22. Preston D, Shapiro B. Tarsal tunnel syndrome. In: Preston D, Shapiro B, editors. Electromyography and neuromuscular disorders. 3rd ed. Philadelphia: Elsevier; 2013. 365–372.

    Chapter  Google Scholar 

  23. Preston D, Shapiro B. Basic overview of electromyography. In: Preston D, Shapiro B, editors. Electromyography and neuromuscular disorders. 3rd ed. Philadelphia: Elsevier; 2013. 125–128.

    Chapter  Google Scholar 

  24. Preston D, Shapiro B. Anatomy for needle electromyography. In: Preston D, Shapiro B, editors. Electromyography and neuromuscular disorders. 3rd ed. Philadelphia: Elsevier; 2013. 174–190.

    Google Scholar 

  25. Kaplan P, Kernahan J. Tarsal tunnel syndrome: an electrodiagnostic and surgical correlation. J Bone Joint Surg 1981; 63:96–99.

    Article  CAS  PubMed  Google Scholar 

  26. Aprile I, Tonali P, Caliandro P, Pazzaglia C, Foschini M, Di Stasio E et al. Italian multicentre study of peroneal mononeuropathy: multiperspective follow-up. Neurol Sci 2009; 30:37–44.

    Article  CAS  PubMed  Google Scholar 

  27. Weiss L. Injury to peripheral nerves. In: Weiss L, Silver J, Weiss J, editors. Easy EMG. 1st ed. Edinburgh: Butterworth-Heinemann; 2004. 81–86.

    Chapter  Google Scholar 

  28. Masakado Y, Kawakami M, Suzuki K, Abe L, Ota T, Kimura A. Clinical neurophysiology in the diagnosis of peroneal nerve palsy. Keio J Med 2008; 57:84–89.

    Article  PubMed  Google Scholar 

  29. Riente L, Delle Sedie A, Iagnocco A, Filippucci E, Meenagh G, Valesini G, et al. Ultrasound imaging for the rheumatologist V. ultrasonography of the ankle and foot. Clin Exp Rheumatol 2006; 24:493–498.

    CAS  PubMed  Google Scholar 

  30. Naredo E, Collado P, Cruz A, Palop M, Cabero F, Richi P, et al. Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Rheum 2007; 57:116–124

    Article  PubMed  Google Scholar 

  31. Brown A, Quinn M, Karim Z, Conaghan P, Peterfy C, Hensor E, et al. Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission. Arthritis Rheum 2006; 54:3761–3773.

    Article  CAS  PubMed  Google Scholar 

  32. Marhadour T, Saraux A. Rheumatoid arthritis assessment with ultrasonography. In: Thoirs K, editor. Sonography. Rijeka: InTech; 2012. ISBN: 978-953-307-947-9. Available at: http://www.intechopen.com/books/sonography/rheumatoid-arthritis-assessment-with-ultrasonography

    Google Scholar 

  33. Wakefield RJ, Balint PV, Szkudlarek M, Filippucci E, Backhaus M, D’Agostino MA, et al. Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol 2005; 32:2485–2487.

    PubMed  Google Scholar 

  34. Koenig R, Pedro M, Heinen C, Schmidt T, Richter H, Antoniadis G, et al. High-resolution ultrasonography in evaluating peripheral nerve entrapment and trauma. Neurosurg Focus 2009; 26:E13.

    Article  PubMed  Google Scholar 

  35. Wolfe AM. The epidemiology of rheumatoid arthritis: a review. I. Surveys. Bull Rheum Dis 1968; 19:518–523.

    CAS  PubMed  Google Scholar 

  36. Kvien T, Uhlig T, Ødegård S, Heiberg M. Epidemiological aspects of rheumatoid arthritis: the sex ratio. Ann N Y Acad Sci 2006; 1069:212–222.

    Article  PubMed  Google Scholar 

  37. Stucki G, Schönbächler J, Brühlmann P, Mariacher S, Stoll T, Michel B. Does a muscle strength index provide complementary information to traditional disease activity variables in patients with rheumatoid arthritis?. J Rheumatol 1994; 21:2200–2205.

    CAS  PubMed  Google Scholar 

  38. Stucki G, Bruhlmann P, Stucki S, Michel B. Isometric muscle strength is an indicator of self-reported physical functional disability in patients with rheumatoid arthritis. Rheumatology. 1998; 37:643–648.

    Article  CAS  Google Scholar 

  39. Willer B. Effects of creatine supplementation on muscle weakness in patients with rheumatoid arthritis. Rheumatology 2000; 39:293–298.

    Article  CAS  PubMed  Google Scholar 

  40. Engvall I, Elkan A, Tengstrand B, Cederholm T, Brismar K, Hafström I. Cachexia in rheumatoid arthritis is associated with inflammatory activity, physical disability, and low bioavailable insulin-like growth factor. Scand J Rehabil Med 2008; 37:321–328.

    Article  CAS  Google Scholar 

  41. Chen Y, Chen H, Hsieh C, Hsieh T, Lan J, Chen D. A close association of body cell mass loss with disease activity and disability in Chinese patients with rheumatoid arthritis. Clinics 2011; 66:1217–1222.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Welsing P, Van Gestel A, Swinkels H, Kiemeney L, Van Riel P. The relationship between disease activity, joint destruction, and functional capacity over the course of rheumatoid arthritis. Arthritis Rheum 2001; 44:2009–2017.

    Article  CAS  PubMed  Google Scholar 

  43. Boyd T, Bonner A, Thorne C, Boire G, Hitchon C, Haraoui B, et al. The relationship between function and disease activity as measured by the HAQ and DAS28 varies over time and by rheumatoid factor status in early inflammatory arthritis (EIA). Results from the CATCH Cohort. Open Rheumatol J 2013; 7:58–63.

    Article  PubMed  Google Scholar 

  44. Nunez-Cornejo Piquer C, Nunez-Cornejo Palomares C, Ivorra Cortes J, Grau E, Chalmeta Verdejo I, Molina Almela C, et al. AB0230 relationship between HAQ, DAS28 and radiological damage with functional capacity of the hand in rheumatoid arthritis. Ann Rheum Dis 2014; 73:879–880.

    Article  Google Scholar 

  45. Bekkelund S, Torbergsen T, Omdal R, Husby G, Mellgren S. Nerve conduction studies in rheumatoid arthritis. Scand J Rheumatol 1996; 25:287–292.

    Article  CAS  PubMed  Google Scholar 

  46. Kadhim A, Abdul-Kareem A, Hamdan F. Peripheral neuropathy in rheumatoid arthritis: a clinical and neurophysiological study. Iraqi J Med Sci. 2003; 2:376–382.

    Google Scholar 

  47. Sulaiman M, Sulaiman S, Majdal H. Nerve conduction and electromyography in rheumatoid arthritis patients: a case–control study. Ann Coll Med Mosul 2012; 38:44–51.

    Article  Google Scholar 

  48. Bekkelund S, Torbergsen T, Husby G, Mellgren S. Myopathy and neuropathy in rheumatoid arthritis. A quantitative controlled electromyographic study. J Rheumatol 1999; 26:2348–2351.

    CAS  PubMed  Google Scholar 

  49. Abdullah Q, Rasool M, Qader T. Assessment of neurophysiologic changes and disease activity in patients with chronic rheumatoid arthritis. Jordan Med J 2013; 47:131–141.

    Article  Google Scholar 

  50. Olney R. Neuropathies associated with connective tissue disease. Semin Neurol 1998; 18:63–72.

    Article  CAS  PubMed  Google Scholar 

  51. Nadkar M, Agarwal R, Samant R, Chhugani S, Idgunji S, Iyer S, et al. Neuropathy in rheumatoid arthritis. J Assoc Physicians India 2001; 49:217–220.

    CAS  PubMed  Google Scholar 

  52. Khedr E, Herdan O, Khalifa H, Ali A, El Fetoh N, El-Hammady D, et al. Clinical and subclinical neuropsychiatric abnormalities in rheumatoid arthritis patients. Egypt Rheumatol Rehabil. 2015; 42:11–18.

    Article  Google Scholar 

  53. Turesson C, Matteson E. Vasculitis in rheumatoid arthritis. Curr Opin Rheumatol 2009; 21:35–40.

    Article  PubMed  Google Scholar 

  54. Aktekin L, Gözlükaya H, Bodur H, Borman P, Köz Ö. Peripheral neuropathy in rheumatoid arthritis patients; an electroneurophysiological study. Turk J Rheumatol 2009; 24:62–64.

    Google Scholar 

  55. Ramos-Remus C, Duran-Barragan S, Castillo-Ortiz J. Beyond the joints. Clin Rheumatol 2011; 31:1–12.

    Article  PubMed  Google Scholar 

  56. Rubin D, Daube J. Nerve conduction studies. Aminoff’s Electrodiagnosis in Clinical Neurology. 6th ed. Philadelphia: Saunders/ Elsevier; 2012. p. 289–326.

    Google Scholar 

  57. Herbison GJ, Teng C, Martin JH, Ditunno JF Jr. Carpal tunnel syndrome in rheumatoid arthritis. Am J Phys Med 1973; 52–68.

  58. Fleming A, Dodman S, Crown J, Corbett M. Extra-articular features in early rheumatoid arthritis. BMJ 1976; 1:1241–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lanzillo B, Pappone N, Crisci C, Di Girolamo C, Massini R, Caruso G. Subclinical peripheral nerve involvement in patients with rheumatoid arthritis. Arthritis Rheum 1998; 41:1196–1202.

    Article  CAS  PubMed  Google Scholar 

  60. Bayrak A, Durmus D, Durmaz Y, Demir İ, Canturk F, Onar M. Electrophysiological assessment of polyneuropathic involvement in rheumatoid arthritis: relationships among demographic, clinical and laboratory findings. Neurol Res 2010; 32:711–714.

    Article  PubMed  Google Scholar 

  61. Sim M, Kim D, Yoon J, Park D, Kim Y. Assessment of peripheral neuropathy in patients with rheumatoid arthritis who complain of neurologic symptoms. Ann Rehabil Med 2014; 38:249–255.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Oh S. Neuropathies of the foot. Clin Neurophysiol 2007; 118:954–980.

    Article  PubMed  Google Scholar 

  63. Baylan S, Paik S, Barnert A, Ko K, Yu J, Persellin R. Prevalence of the tarsal tunnel syndrome in rheumatoid arthritis. Rheumatology 1981; 20:148–150.

    Article  CAS  Google Scholar 

  64. Helliwell P. Clinical features of the foot in rheumatoid arthritis. In: Helliwell P, editor. The foot and ankle in rheumatoid arthritis. 1st ed. Edinburgh: Churchill Livingstone/Elsevier; 2007. p. 57–74.

    Google Scholar 

  65. Nakano K. Entrapment neuropathy from Baker’s cyst. JAMA 1978; 239:135b–135b.

    Article  Google Scholar 

  66. Katirji B. Peroneal neuropathy. Neurol Clin 1990; 17:567–591.

    Article  Google Scholar 

  67. Sourkes M, Stewart J. Common peroneal neuropathy: a study of selective motor and sensory involvement. Neurology 1991; 41:1029–1029.

    Article  CAS  PubMed  Google Scholar 

  68. Soliman S, Korah T, Hammoda G, Mousa W. Significance of serum levels of angiopoietin-2 and its relationship to Doppler ultrasonographic findings in rheumatoid arthritis patients. Egypt Rheumatol 2014; 36: 15–20.

    Article  Google Scholar 

  69. Naredo E, Möller I, Cruz A, Carmona L, Garrido J. Power Doppler ultrasonographic monitoring of response to antitumor necrosis factor therapy in patients with rheumatoid arthritis. Arthritis Rheum 2008; 58:2248–2256.

    Article  PubMed  Google Scholar 

  70. Oh SJ, Sarala PK, Kuba T, Elmore RS. Tarsal tunnel syndrome: electrophysiological study. Ann Neurol 1979; 5:327–330.

    Article  CAS  PubMed  Google Scholar 

  71. Oh SJ, Kim HS, Ahmad BK. The near-nerve sensory nerve conduction in tarsal tunnel syndrome. J Neurol Neurosurg Psychiatry 1985; 48: 999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Galardi G, Amadio S, Maderna L, Meraviglia M, Brunati L, Conte G, et al. Electrophysiologic studies in tarsal tunnel syndrome. Am J Phys Med Rehabil 1994; 73:193–198.

    Article  CAS  PubMed  Google Scholar 

  73. Mondelli M, Giannini F, Reale F. Clinical and electrophysiological findings and follow-up in tarsal tunnel syndrome. Electroencephalogr Clin Neurophysiol 1998; 109:418–425.

    Article  CAS  PubMed  Google Scholar 

  74. Mondelli M, Morana P, Padua L. An electrophysiological severity scale in tarsal tunnel syndrome. Acta Neurol Scand 2004; 109:284–289.

    Article  CAS  PubMed  Google Scholar 

  75. Patel AT, Gaines K, Malamut R, Park TA, Toro DR, Holland N, et al. Usefulness of electrodiagnostic techniques in the evaluation of suspected tarsal tunnel syndrome: an evidence based review. Muscle Nerve 2005; 32:236–240.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira Tarek El-Shanawany MSc.

Additional information

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hewala, A.ES.I., Soliman, S.G., Labeeb, A.A. et al. Foot neuropathy in rheumatoid arthritis patients: clinical, electrophysiological, and ultrasound studies. Egypt Rheumatol Rehabil 43, 85–94 (2016). https://doi.org/10.4103/1110-161X.189640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/1110-161X.189640

Keywords