Yonekawa T, Komaki H, Saito Y, Sugai K, Sasaki M. Peripheral nerve abnormalities in pediatric patients with spinal muscular atrophy. Brain Dev 2013; 35:165–171.
Article
Google Scholar
Farrar MA, Vucic S, Johnston HM, du Sart D, Kiernan MC. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr 2013; 162:155-159.
Article
Google Scholar
Burghes AH, Beattie CE. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009; 10:597–609.
Article
CAS
Google Scholar
Markowitz JA, Singh P, Darras BT. Spinal muscular atrophy: a clinical and research update. Pediatr Neurol 2012; 46:1–12.
Article
Google Scholar
Zerres K, Davies KE. 59th ENMC International Workshop: Spinal muscular atrophies: recent progress and revised diagnostic criteria 17e19 April 1998, Soestduinen, The Netherlands. Neuromuscul Disord 1999; 9:272–278.
Article
CAS
Google Scholar
Dubowitz V. Chaos in the classification of SMA: a possible resolution. Neuromuscul Disord 1995; 5:3–5.
Article
CAS
Google Scholar
Mentis GZ, Blivis D, Liu W, Drobac E, Crowder ME, Kong L, et al. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 2011; 69:453–467.
Article
CAS
Google Scholar
Chien YY, Nonaka I. Peripheral nerve involvement in Werdnig–Hoffmann disease. Brain Dev 1989; 11:221–229.
Article
CAS
Google Scholar
Rudnik-Schöneborn S, Goebel HH, Schlote W, Molaian S, Omran H, Ketelsen U, et al. Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy. Neurology 2003; 60:983–987.
Article
Google Scholar
Carpenter S, Karpati G, Rothman S, Watters G, Andermann F. Pathological involvement of primary sensory neurons in Werdnig– Hoffmann disease. Acta Neuropathol 1978; 42:91–97.
Article
CAS
Google Scholar
Marshall A, Duchen LW. Sensory system involvement in infantile spinal muscular atrophy. J Neurol Sci 1975; 26:349–359.
Article
CAS
Google Scholar
Schwartz MS, Moosa A. Sensory nerve conduction in spinal muscular atrophies. Dev Med Child Neurol 1977; 19:50–53.
Article
CAS
Google Scholar
Ryniewicz B. Motor and sensory conduction velocity in spinal muscular atrophy. Follow-up study. Electromyogr Clin Neurophysiol 1977; 17:385–391.
CAS
PubMed
Google Scholar
Cheliout-Heraut F, Barois A, Urtizberea A, Viollet L, Estournet Mathiaud B. Evoked potentials in spinal muscular atrophy. J Child Neurol 2003; 18:383-390.
Article
Google Scholar
Munsat TL. Workshop report: International SMA Collaboration. Neuromuscul Disord 1991; 1:81.
Article
Google Scholar
Ling KK, Lin MY, Zingg B, Feng Z, Ko CP. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 2010; 5:e15457.
Google Scholar
Raff MC, Whitmore AV, Finn JT. Axonal self-destruction and neurodegeneration. Science 2002; 296:868–871.
Article
CAS
Google Scholar
Wishart TM, Parson SH, Gillingwater TH. Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 2006; 65:733–739.
Article
CAS
Google Scholar
Schütz B. Imbalanced excitatory to inhibitory synaptic input precedes motor neuron degeneration in an animal model of amyotrophic lateral sclerosis. Neurobiol Dis 2005; 20:131–140.
Article
Google Scholar
Jiang M, Schuster JE, Fu R, Siddique T, Heckman CJ. Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis. J Neurosci 2009; 29:15031–15038.
Article
CAS
Google Scholar
Ikemoto A, Nakamura S, Akiguchi I, Hirano A. Differential expression between synaptic vesicle proteins and presynaptic plasma membrane proteins in the anterior horn of amyotrophic lateral sclerosis. Acta Neuropathol 2002; 103:179–187.
Article
CAS
Google Scholar
Nagao M, Misawa H, Kato S, Hirai S. Loss of cholinergic synapses on the spinal motor neurons of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1998; 57:329–333.
Article
CAS
Google Scholar
Zang DW, Lopes EC, Cheema SS. Loss of synaptophysin-positive boutons on lumbar motor neurons innervating the medial gastrocnemius muscle of the SOD1G93A G1H transgenic mouse model of ALS. J Neurosci Res 2005; 79:694–699.
Article
CAS
Google Scholar
Ikemoto A, Hirano A, Matsumoto S, Akiguchi I, Kimura J. Synaptophysin expression in the anterior horn of Werdnig–Hoffmann disease. J Neurol Sci 1996; 136:94–100.
Article
CAS
Google Scholar
Yamanouchi Y, Yamanouchi H, Becker LE. Synaptic alterations of anterior horn cells in Werdnig–Hoffmann disease. Pediatr Neurol 1996; 15:32–35.
Article
CAS
Google Scholar
Gogliotti RG, Quinlan KA, Barlow CB, Heier CR, Heckman CJ, DiDonato CJ. Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction, J Neurosci. 2012; 32:3818–3829.
Article
CAS
Google Scholar
Moosa A, Dubowitz V. Motor nerve conduction velocity in spinal muscular atrophy of childhood. Arch Dis Child 1976; 51:974–977.
Article
CAS
Google Scholar
Kimura J. Basics in nerve conduction study: evoked potentials and electromyography: principles and practice (in Japanese). Tokyo: Igakushoin; 1990.
Google Scholar
Gilliatt RW, Hopf HC, Rudge P, Baraiser M. Axonal velocities of motor units in the hand and foot muscles of the baboon. J Neurol Sci 1976; 29:249–258.
Article
CAS
Google Scholar
Miyanomae Y, Takeuchi Y, Nishimura A, Kawase S, Hirai K, Ochi M, et al. Motor nerve conduction studies on children with spinal muscular atrophy. Acta Paediatr Jpn 1996; 38:576–579.
Article
CAS
Google Scholar
Kumagai T, Hashizume Y. Morphological and morphometric studies on the spinal cord lesion in Werdnig–Hoffmann disease. Brain Dev 1982; 4:87–96.
Article
CAS
Google Scholar
Murayama S, Bouldin TW, Suzuki K. Immunocytochemical and ultrastructural studies of Werdnig–Hoffmann disease. Acta Neuropathol 1991; 81:408–417.
Article
CAS
Google Scholar
Osawa M, Shishikura K. Werdnig–Hoffmann disease and variants. In: de Jong JMBV, editor. Handbook of clinical neurology. Amsterdam: Elsevier; 1991. 15:51–80.
Google Scholar